Fluorescent Quality Assessment slide for structured illumination systems (SIM) 

Usage

Argolight slide are designed to routinely check the stability of the characteristics of your systems.

Description

Argo-SIM  slides are re-usable stable fluorescence slides for assessing and monitoring fluorescence based imaging systems. The Argo-SIM slides are specifically designed for structured illumination microscopes, as well as any system using deconvolution algorithms.

Each Argo-SIM slide contains several fluorescent microscopic  patterns designed to help the user detect aberration in imaging systems.

Their intensity and spectrum are stable for over 3 years.  The analysis of pattern images can be simplified using Argolight software solutions. More about slides stability

The slides are compatible with excitation from 350 nm to 650 nm (fluorescence excitation over 550 nm requires sensitive sensors).

Ideal to:

  • Ensure reliability and stability of an imaging system – obtain coherent measurements comparable over several years (including fluorescence quantities).
  • Set-up and maintain quality management at a low cost for fluorescence measurements.

Argo-SIM strengths:

  • Simplicity : No need for refrigerated storage, no consumable to add.
  • Ruggedness : Withstands fall from 2m height thanks to its metallic enclosure.
  • Compatibility : Works with oil immersion, dry objectives and water immersion objectives (with the exception of water-dipping objectives)
  • Cost : Replaces consumable most tools and increases monitoring frequency.

Designed for high resolution systems :

Content of the slide

Each Argo-SIM slide contains 14 fluorescent patterns.

Pattern A – 3D Matrix of rings. A 3D matrix of 9 × 9 × 9 rings, separated by 5 μm, on a total volume of 40 μm × 40 μm × 40 μm.

Pattern B – Grid. A grid with a step of 10 μm, with 5 crosses of 5 μm length in some squares.

Pattern C – 2D Matrix of rings. A 2D matrix of 21 × 21 rings, separated by 5 μm, on a total field of 110 μm × 110 μm. The field of rings is surrounded by eight landmarks, and exhibits a 3 μm long cross in its center.

Pattern D – Matrix of rings on a background. This pattern is identical to pattern A, with a background that is 10 μm below.

Pattern E – Matrix of crosses. A matrix of 4 × 4 crosses, having a length of 5 μm. The crosses are composed of vertical lines that are in the same plane, and by horizontal lines, going gradually deeper within the glass from 0 to 1.5 μm, with a step of 100 nm.

Pattern F – Meridians of a sphere. Three circles of diameter 25 μm in different orthogonal planes, featuring the meridians of a sphere.

Pattern G – Repositionning crosses. The repositioning crosses are 20 μm long and are positioned 500 μm from one to another in the X direction, the Y direction, or both.

Pattern H – 4 x 4 Intensity. Sixteen 6 μm-wide squares having different fluorescence intensity levels following a linear evolution, organized in a 4 × 4 matrix.

Pattern I – 2×16 Intensity Twice sixteen 15 μm × 0.7 μm rectangles having different fl uorescence intensity levels following a linear evolution, organized in a 2×16 matrix.

Pattern J – 3D Crossing stairs. Empty cylinders embedded at different depths, like two crossing stairs, surrounded by four pillars. There are four stairs in the slide, with varying steps: 1, 0.5, 0.25 and 0.125 μm.

Pattern K – Target. Concentric circles with increasing radii from 10 μm to 120 μm with a step of 10 μm, featuring a target.

Pattern L – Stability of resolution Pairs of 36 μm-long lines which spacing gradually increases, from 0 to 390 nm, with a step of 30 nm. Four sets of lines are present: one vertical, one horizontal, and two oriented at + and – 45°

Pattern M – Logo. Letters forming the name “Argolight”, and surrounded by a 80 μm × 18 μm frame.

Pattern N – Geometrical figures. A circle, a triangle, a square, a pentagon, an hexagon, an heptagon, an octagon and a star with 16 arms.

Pattern Overview. This represents the overall repartition of patterns in the SIM slide with scale.

Want to know more or ask for a quotation :

Contact us